Across

arguments.

3. The period of the tangent function is radians.
8. Complex numbers $z \& \overline{z}$ are of each other.
10. If $f(-x) = f(x)$, then f is $a(n)$ function.
11. 6 + 10 <i>i</i> is a complex number written in form.
14 is the reciprocal of tangent.
16. The complex number -3 = 8i lies in the quadrant.
18. When converting a complex number in rectangular form to polar form, you must make sure the
argument, $ heta$, is in the correct
Down
In the complex plane, the vertical axis is the axis.
2 is the reciprocal of sine.
DeMoivre's Theorem enables us to calculate of complex numbers.
4. The number 10(cos 150° + isin 150°) is written in form.
5. $\cos(2\theta) = 2\cos^2\theta - 1$ is $a(n)$ angle formula.
6. In the complex plane, the horizontal axis is the axis.
7. $\sin^2 \theta + \cos^2 \theta = 1$ is $a(n)$ identity.
9. The absolute value of a complex number is also called the
12. is the reciprocal of cosine.
13. An equation that is true for all values of the variable (as defined by the domain).
15. If $f(-x) = -f(x)$, then f is $a(n)$ function.
17. To calculate the argument of a complex number, you must take the inverse of b/a .
19. When multiplying two complex numbers in trig, form, you multiply the moduli and the

1. Let
$$z = -3\sqrt{3} - 3i$$
.

- a. Write z in rectangular form. (333,-3)
- (=J27+9 = J36 = 6
- c. Write z in **polar** form. Keep θ in degrees.

- Unit 4 Test Info:
 1. You will be able to use your calculator.
 - 2. You will be given a formula sheet that has the Pythagorean, Sum & Difference and Double Angle Identities. It will also have the Complex nth Roots Theorem formula.
 - 3. You must have the Unit Circle and all other formulas memorized.

$$\tan \theta = \frac{-3}{-3\sqrt{3}} = \frac{1}{\sqrt{3}} = \theta' = 30^{\circ} + 180^{\circ} = 210^{\circ}$$

$$\begin{bmatrix} 6, 210^{\circ} \end{bmatrix}$$

2. Express [4, 315°] in exact standard form.

$$C = 4 \cos 315^{\circ}$$
 $b = 4 \sin 315^{\circ}$
 $= 4 \cdot \sqrt{2}$
 $= 2\sqrt{2}$
 $= -2\sqrt{2}$

3. Find all fourth roots of $\frac{9\sqrt{3}}{2} + \frac{9}{2}i$. Write your answers in polar form. Keep θ in degrees.

Graph the results below.

$$C = \sqrt{\frac{243}{4} + \frac{81}{4}} = \sqrt{81} = 9$$

$$\Theta = \sqrt{3} = 30^{\circ}$$

What type of figure is created by connecting the four roots?

4. Evaluate each. $0^{\circ} \le \theta < 360^{\circ}$ Write your exact answers in the form they started in.

b.
$$\left[3\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)\right]$$

[2⁹, 120°-9] = [5,2,1080°]

[2⁹, 120°-9] = [5,2,2080°]

[2⁹, 120°-9] = [5,2,2080°]

[2⁹, 120°-9] = [5,2,2080°

c. $w \cdot z$ and $\frac{w}{z}$ if $w = [2,150^{\circ}]$ and $z = [3,60^{\circ}]$

- Suppose that $\sin \theta = \frac{-4}{7}$ and $\tan \theta < 0$. 5.
 - a. Find the exact these of each of the following.

 i. $\cos \theta = \frac{4}{33}$ ii. $\tan \theta = \frac{4}{33}$

i.
$$\cos \theta = \frac{112}{7}$$

ii.
$$\tan \theta = \sqrt{33}$$

iii.
$$\csc \theta = \frac{9}{9}$$

iv.
$$\sec \theta = \sqrt{53}$$

$$v. \cot \theta = -\mathbf{U}$$

vi.
$$\sin(2\theta) = \frac{8133}{46}$$

b. Identify a possible approximate positive degree measure for θ . Show your work.

$$\tan \theta = \frac{-4}{\sqrt{33}}$$

Verify the identities.

6.
$$\sin\left(\frac{\pi}{6} + x\right) + \sin\left(\frac{\pi}{6} - x\right) = \cos(x)$$

7.
$$\sec^4 x - \sec^2 x = \tan^4 x + \tan^2 x$$

Sec²
$$\times$$
(sec² \times -1) =
(1+tan² \times)(tan² \times +1-1)=
(1+tan² \times)+an⁴ \times + +an² \times =

Solve for primary values.

8. $\sin x \tan x + \sqrt{3} \sin x = 0$

Find all exact complex solutions.

(Write your answers in standard form.)

9.
$$x^3 = -8i$$

$$K = 8 \quad \Theta = 270^{\circ}$$

$$K = 0 \quad [3/8], \frac{270 + 360.0}{3}$$

$$= [2, 90^{\circ}] = [2i]$$

$$K = 1 \quad = [2, 210^{\circ}] = [3.5 - i]$$

$$K = 2 \quad = [2, 330^{\circ}] = [3.5 - i]$$

Solve the following problem. Round your answers to the nearest 100th. (degree mode)

10. Because of ocean tides, the depth of the River Thames in London varies as a function of time that involves the sine. Suppose the depth d in meters as a function of t, the hour of the day, is modeled by

$$d(t) = 3 \sin \left(\frac{\pi}{6}(t-4)\right) + 8,$$
 where $t = 0$ corresponds to midnight, or 12:00 A.M.

a. Predict the depth of the river at 2:00 P.M.

b. At approximately what times is the depth 10 m?

SHOW YOUR WORK.

$$3\sin u + 8 = 10$$

 $3\sin u + 8 = 10$
 $3\sin u = 2$
 $\sin u = 2$
 $\sin u = 3$
 $180 - 41.8^{\circ}$
 138.19°

$$30t - 120 = 41.8 + 360n$$
 $30t - 120 = 138.19 + 360n$
 $30t = 161.8 + 360n$ $30t = 258.19 + 360n$
 30 30 30 30 30 30 30
 $t = 5.4 + 12n$ $t = 8.61 + 12n$
 $t = 5.4, 17.4$ $t = 8.61, 20.61$